25.1.07

Quem responde?

(Clicar na imagem para a ampliar)
NOTA: A resposta já está dada (e justificada) em "Comentário".

6 Comments:

Anonymous Anónimo said...

Peço desculpa por o assunto não ter nada a ver, mas o que é que aconteceu o blog o carmo e a trindade?
è que desde a hitória da calçada não aparece mais nada.

25 de janeiro de 2007 às 15:01  
Anonymous Anónimo said...

O peso de uma garrafa é igual ao peso de cinco copos.

25 de janeiro de 2007 às 15:22  
Anonymous Anónimo said...

FR,

O blogue continuou com outro nome (sem o "O"):

http://carmoeatrindade.blogspot.com/

25 de janeiro de 2007 às 15:35  
Anonymous Anónimo said...

Rui,

Foi de cabeça ou com lápis e papel?

Não quer indicar aqui o raciocínio ou as contas?

25 de janeiro de 2007 às 15:36  
Anonymous Anónimo said...

Se designarmos o peso de uma garrafa por "g", o peso de um copo por "c", o peso de um prato por "p" e o peso de uma caneca por "n" então temos:

| g + c = n
| g = c + p
| 2n = 3p

que é equivalente a:

| g = n - c
| g = c + p
| n = 3p / 2

resolvendo este sistema de equações:

| g = 3p / 2 - c
| g = c + p

c + p = 3p / 2 - c <=>

2c = 3p / 2 - p <=>

4c = 3p - 2p <=>

4c = p

como g = c + p então g = 5c

quod erat demonstrandum

25 de janeiro de 2007 às 16:12  
Anonymous Anónimo said...

Para quem não está familiarizado com as técnicas da Álgebra, subjacentes à resolução de equações, pode ser interessante uma solução mais figurativa.

Assim, imaginemos que na primeira balança substituimos a garrafa pelo conjunto copo+prato que na segunda balança equilibra a garrafa. O equilíbrio da primeira mantem-se, mas agora com dois copos e um prato à esquerda e uma caneca à direita.

Desta modo podemos ir à terceira balança e substituir cada caneca por dois copos e um prato. Do lado esquerdo ficam quatro copos e dois pratos, em equilíbrio com os três pratos do lado direito. É visível que há pratos repetidos nos dois lados da balança. Podemos retirar dois pratos de cada lado, sem alterar o equilíbrio da balança. Ficam quatro copos à esquerda e um prato à direita. Logo, um prato pesa o mesmo do que quatro copos.

Voltamos agora à segunda balança e substituimos o prato por quatro copos. Bingo! Ficamos com uma garrafa à esquerda equilibrada por cinco copos à direita.

Este processo não é mais do que uma aplicação ilustrada das técnicas de resolução de equações. Daria um excelente exemplo numa aula de iniciação à Álgebra.

Jorge Oliveira

25 de janeiro de 2007 às 21:57  

Publicar um comentário

<< Home